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Application Readiness on Summit

Application | Scaling | Acceleration Program Petascale
Application readiness criteria: @20%
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GronOR Non-Orthogonal Configuration Interaction Methodology

= Wave functions ¥ are expanded in terms of many-electron basis functions ®; that can be
Slater determinants or linear combinations t?vereof:

Y = Z Ciq)i
=1

= Slater determinants ®@; are anti-symmetrized products of orbitals ¢;:

D; = A“ “(pj
J
= Orbitals ¢, and consequently the Slater determinants @; , do not need to be orthogonal:
(@] ®;) = Sy
= This non-orthogonality complicates calculation of required Hamiltonian matrix elements
(@;|H|®;) = Hy;

= Solve (H-ES)(c)=0 to get energies and ¥ (i.e. the expansion coefficients c¢;)
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Advantages of Non-Orthogonal Configuration Interaction

= Wave function expansions allow for the inclusion of:
* Orbital relaxation effect
* Correlation effects

= Expansion in terms of non-orthogonal determinants @; lead to shorter expansions

= Wave functions in terms of non orthogonal orbitals:
* Easy description of systems in terms of individually optimized states of system
* Easy description of systems in terms of predefined states of system components
* Facilitates chemical interpretation
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GNOME Factorization of Cofactors

= Two electron matrix eIements between non-orthogonal determinants A, and Ap:

[, = ZZ < aiak|0q,|bib; > S(ik,jl)

k>i [>]

= Expansion in atomic basis functions {x} and {x’}, and factorization of the cofactor matrix
leads to:

m n
[, = Z z < XpXr|012lX X's > B(pr, qs)

" r>p $>q
N z Z < XpXrlO12lX X's > (1 = ppr) (1 — pqs)F (w)pyG ()
r>p $>q

= The number of singularities w determines the functional form of F and G in terms of the
expansion coefficients
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Non-Orthogonal Configuration Interaction

* Description of molecular assemblies in terms of combinations of molecular electronic states
* Resembles valence bond picture of electronic structure in terms of Lewis structures
* Intuitive description of local processes, such as excitations of one molecule

e Putin practice using the embedded cluster model:
1. Generation of many electron basis functions (MEBFs) as spin-adapted anti-symmetrized combinations
(SAACs) of molecular wave functions
2. Non-Orthogonal Configuration Interaction (NOCI) calculation

* Wave functions can be of any kind, e.g. correlated wave functions
* Complete Active Space Self Consistent Field (CASSCF), or
* Configuration Interaction (Cl) calculations
* Fully optimized molecular state wave functions lead to:
* Non-orthogonal MEBFs
* Proper inclusion of orbital relaxation and local correlation effects
* Allows direct calculation of interaction matrix elements between different electronic states
* Proper description possible for physical processes such as
* Charge separation following photo-excitation
* Singlet fission of photo-excited state on one molecule and two molecular triplet states
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Example Application: Singlet Fission

A potential application for GronOR is to describe singlet fission

In singlet fission, the electronic coupling between S,S; and ITT states is quantity of interest.
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Spin-adapted product wave functions

* Consider two molecules for which the S, S;, T;, Dy and CI)1> = ’ ‘Pio‘l"zo> (I)5> = ‘-PQ‘PIT;>
D, molecular states have been calculated .

* Leads to possible formation of seven spin singlet CI)2> = ‘I’j‘“{’f;> (I)6> = ‘PQO‘PQO >
combinations

* MEBFs built from molecular wave functions as linear (I)3> = ‘Pfquz°> (I)7> = ‘PEOLPZO >
combinations of anti-symmetrized products of the different
molecular Ms functions, such that the total Mg equals 0. ®,)= ‘Pi“PfD

* For example, molecular triplet states are combined into a singlet according to
I =~ I =~ |
| (I)5> = _gﬁA‘ (\PZ )Ms=+1 (\Pg )MS:_1> B gx/gA (LIJZ )Ms=—1 (‘Pg )Ms=+1> +§\/§A‘ (LPZ )MS:O (\IjZ )MS:O>

* The MEBF built from two molecular doublet states is a linear combination of anti-symmetrized products of the
Ms = +% and Mg =-%, and M = -% and Mg = +/2 molecular functions

(5 ) )3 PR, ), )

)= V24 (w2)
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Spin-adapted product wave functions

 The final NOCI wave function is then written as a linear combination of the MEBF

Y voar = Zcu‘q)u>
u

* Coefficients C, are determined in the usual way with variational theory

* Determination of C, requires the Hamiltonian matrix elements and overlap matrix elements

(®,|H|®,) (@)
* Use of optimized orbitals for each molecular electronic state leads to non-orthogonal orbitals in

W), e [
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GronOR Computational Complexity

For an assembly consisting of two molecules, where the molecular CASSCF wavefunctions consist

of 500 determinants:

 The MEBFs have ~10° determinants

* The number of matrix elements over non-orthogonal determinants to be calculated is ~10°

* Many of these determinants will be zero

IAJB __KALB .

* |f the product of the coefficients Cio Cvo 18 small, the matrix elements do not need to be evaluated

In the example this would reduce the number of matrix elements to ~10’
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GronOR Implementation

e Currently interfaced with:
* OpenMolcas to obtain the CASSCF Cl vector and the state specific CASSCF orbitals
* OpenMolcas to obtain the required two-electron integrals

* First step is the generation of the anti-symmetrized product determinants with products of coefficients
* Using appropriate spin-coupling coefficients, the products are combined into anti-symmetrized
spin-adapted combinations
* This step is not parallelized, as it takes minimal time

* Second step is the evaluation of Hamiltonian and overlap matrix elements
* Requires the processing of a large set of two-electron integrals
* Is the computationally most time consuming part of the calculation
* Involves many contributions in the form of determinant pairs that can be calculated independently
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GronOR Parallel Accelerated Implementation

* Massively parallel implementation of the algorithm adopts a task-based approach

Scheduler/Execution processing model with process groups evaluating batches of matrix elements

Current implementation allows batched execution of numbers of matrix elements

Work between execution process groups is naturally load-balanced

Execution process group size determined by memory needed to hold 2-electron integrals

Computationally extensive work is GPU accelerated, using OpenACC directives and CUSOLVER library

Asynchronous use of host and accelerator in evaluating matrix elements

Implementation is hard-fault resilient
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GronOR Parallel Implementation

Generation of MEBF list on All Nodes

Master: Matrix Element Evaluation

GPU GPU GPU+CPU GPU+CPU

\Node with one or multiple GPUs / \Node with one or multiple GPUs ) \Node with CPUs only \Node with CPUs only

W: worker communicating with master, w: worker communicating with first worker in a group

Implementation details:
« Different node architectures can be used in a single calculation

* GPU accelerators can be shared between worker processes
* Worker processes can use CPU (single thread) and GPU asynchronously in single matrix element calculation

* Worker processes without GPU access can use OpenMP threading on multiple cores
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GronOR Scheduler-Execution Communication

Scheduling Execution group

Process
results

T

l <4— Receive results
— Send next task

Execution: MPI_Send, blocking
<«— Receive results MPI_Recy, blocking

results

Process l T

— Send duplicate task

Scheduler: MPI_Recy, blocking from ANY_SOURCE
MPI_Send, blocking

MPI_iSend, non-blocking to terminate
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GronOR Benchmark: Two Naphthalene Molecules

Naphthalene itself is not interesting for singlet fission, a dimer of naphthalene molecules
can serve perfectly well for doing performance tests

Geometry was optimized at the DFT level (B3LYP)
Considered four MEBFs: “Pf{”{’ff> |‘Pf;‘P‘Z°> “Pff‘}’f;> “PQ‘P@

CASSCF calculations on the molecular S, S; (By,),
and T, (3B,,) states

Active space consisting of:
four electrons in four orbitals (CAS(4,4)), and
eight electrons in eight orbitals (CAS(8,8)).
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GronOR Benchmark: Two Naphthalene Molecules CAS(8,8)/CAS(4,4)

10000

Time /s GronOR Summit Timings: Naphthalene Dimer
100000 . &\1024: 7834s ® Summit
. CPU+GPU ————— Linear
"o 6 MPI ranks /node
CPU-only
28 MPI ranks /node
* “\3\0481 3930s
10000
6.8x “.3072: 2632s
"e_4096: 1985s
® 4604:1771s
1000
10 100 1000 Nodes 10000 1000

1000 10000

Instead of full 4x4 Hamiltonian a single matrix element <‘{’j°‘l’§° H|‘Pj0‘1’§°> is calculated
This single element requires evaluating 112,867,800 matrix elements!!

The full 4x4 Hamiltonian requires evaluating 2,135,997,480 matrix elements!!!
Near-linear accelerated strong scaling benchmarks on Summit for 64 to 1024 nodes

GPU accelerated speedup is a factor of 6.8 comparing six MPI+GPU and 28 MPI+CPU-only
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GronOR Power Trace on 4590 Summit nodes

GronOR Power Trace on 4590 Summit nodes

12000
Power / kW
8000
6000
4000 3.3 MW
with cooling e
without cooling
2000
Wall Time
0
38:24.0 45:36.0 52:48.0 00:00.0 07:12.0 14:24.0 21:36.0 28:48.0
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GronOR Power Trace on 4604 Summit nodes

Summit Power Breakdown
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Grafana Dashboard on Summit
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Indolonaphtyridine dimer benchmarks at CAS(4,4;4,4) on Summit

Indolonaphtyridine dimer at CAS(4,4;4,4)

5,000
Wall

Clock
Time
sec

o-GPU
-~GPU+SVD+EVD

<©-GPU+SVDIJ+EV)
50

10 25 50 100 Nodes 200

CPU: 30 ranks per node running on CPUs only;

GPU: 6 ranks per node using GPUs with SVD and EVD running on CPUs;

GPU+SVD+EVD: 6 ranks per node running on GPUs with QR-based CUSOLVER solvers GESVD and SYEVD;
GPU+SVDIJ+EVDIJ: 6 ranks per node running on GPUs with Jacobi iterative CUSOLVER solvers GESVDJ and SYEVJ;
Dashed lines indicate ideal linear scaling.
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Indolonaphtyridine and Perylenediimide dimer benchmarks

R Indolonaphtyridine and Perylenediimide benchmarks
100000

(o}
z
o

OO Wall -o-Indolonaphtyridine
o-Perylenediimide
Clock 1000: 292855 N
‘ Time
2000: 14453s

10000

4000: 7423s
o 1000: 5116s
2000: 2598s
4000: 1361s
1000 |
1000 2000 Summit Nodes 4000

Benchmark timings for a perylenediimide and an indolonaphtyridine dimer at CAS(8,8;8,8) as a function of
1,000 to 4,000 Summit nodes used. The dashed lines indicate ideal linear scaling.
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